Differentially Private Testing of Identity and Closeness of Discrete Distributions

Objective

Hypothesis testing with privacy constraints.

Problem Formulation

Identity Testing (IT):

- q: a known distribution over [k]
- $X^n: n$ independent samples from an *unknown* p
- Goal: Design $\mathcal{A}: [k]^n \to \{0, 1\}$ such that:

 $p = q \qquad \Rightarrow \mathcal{A}(X^n) = 1, \text{ w.p. } \geq 2/3,$ $d_{\mathrm{TV}}(p,q) > \alpha \Rightarrow \mathcal{A}(X^n) = 0, \text{ w.p. } \geq 2/3.$

Differential Privacy (DP): \mathcal{A} is ε -DP if for any X^n and Y^n , with $d_{ham}(X^n, Y^n) \leq 1$, for all measurable S, $\frac{\Pr\left(\mathcal{A}(X^n)\in S\right)}{\Pr\left(\mathcal{A}(Y^n)\in S\right)} \le e^{\varepsilon}.$

Private Identity Testing: \mathcal{A} should be ε -DP.

Private Closeness Testing (CT):

- X^n, Y^n : samples from p, and q, both unknown
- Is p = q, or $d_{\text{TV}}(p,q) > \alpha$?

Previous Work

Previous results: $S(IT, \varepsilon) = O\left[\frac{k^{1/2}}{\alpha^2} + \frac{(k \log k)^{1/2}}{\alpha^{3/2}\varepsilon}\right]$ [1]. Independent work: $S(IT, \varepsilon) = O\left[\frac{k^{1/2}}{\alpha^2} + \frac{k^{1/2}}{\alpha\varepsilon^{1/2}}\right]$, if $n \ll k$ [2] Jayadev Acharya, Ziteng Sun, Huanyu Zhang ECE, Cornell University

Main Results

Theorem 1. Sample complexity of identity testing: $S(\mathrm{IT},\varepsilon) = \Theta\left|\frac{k^{1/2}}{\alpha^2} + \max\left\{\frac{k^{1/2}}{\alpha\varepsilon^{1/2}}, \frac{k^{1/3}}{\alpha^{4/3}\varepsilon^{2/3}}, \frac{1}{\alpha\varepsilon}\right\|\right\}.$

we can write it according to the parameter range:

$$S(\mathrm{IT},\varepsilon) = \begin{cases} \Theta(\frac{k^{1/2}}{\alpha^2} + \frac{k^{1/2}}{\alpha\varepsilon^{1/2}}), \\ \Theta(\frac{k^{1/2}}{\alpha^2} + \frac{k^{1/3}}{\alpha^{4/3}\varepsilon^{2/3}}) \\ \Theta(\frac{k^{1/2}}{\alpha^2} + \frac{1}{\alpha\varepsilon}) \end{cases}$$

We give **tight** bound for all parameter ranges.

Reduction from IT to UT

Uniformity Testing (UT): Identity testing when q is a uniform distribution.

- Non-private: [3] proposes a reduction from IT to UT.
- Differential Privacy: we show that up to constant factors, $S(\mathrm{IT},\varepsilon) = S(\mathrm{UT},\varepsilon).$

Uniformity Testing: Upper Bound

N(x): the number of appearances of x in X_1^n . Our private tester comes from privatizing and thresholding the following statistic [4]:

 $S(X_1^n) \stackrel{\text{def}}{=} \frac{1}{2} \cdot \sum \left| \frac{\Lambda}{2} \right|$

This statistic has following two properties:

- Accuracy: It is optimal in non-private case.
- Small sensitivity: for all values of m, and k, we prove $\Delta(S) \leq \min \left\{ \frac{1}{k}, \frac{1}{m} \right\}.$

if $n \leq k$ $_{\overline{3}}$, if $k < n \leq \frac{k}{\alpha^2}$ if $n \geq \frac{k}{\alpha^2}$.

$$\frac{N(x)}{m} - \frac{1}{k}$$
.

Privacy Bounds Via Coupling

Theorem 3. Suppose there is a coupling between $X_1^n \sim p$ and $Y_1^n \sim q$, such that $\mathbb{E}\left[d_{ham}(X_1^n, Y_1^n)\right] \le D.$

must satisfy $\varepsilon = \Omega(\frac{1}{D})$.

Uniformity Testing: Lower Bound

Our proof consists of the following steps:

- Q_1 : uniform distribution over [k].

 $\mathbb{E}\left[d_{ham}(X_{1}^{n},$

Closeness Testing

Theorem 2. Sample complexity of closeness testing: If $\alpha > 1/k^{1/4}$, and $\varepsilon \alpha^2 > 1/k$ (n < k), $S(\mathrm{CT},\varepsilon) = \Theta \left[\frac{k^{2/3}}{\alpha^{4/3}} + \frac{k^{1/2}}{\alpha\sqrt{\varepsilon}} \right],$ $\frac{k^{1/2}}{\alpha\sqrt{\varepsilon}} + \frac{1}{\alpha\varepsilon} \le S(CT,\varepsilon) \le O\left[\frac{k^{1/2}}{\alpha^2} + \frac{1}{\alpha^2\varepsilon}\right].$ References

otherwise,

$$\Omega \left(\frac{k^{1/2}}{\alpha^2} + \frac{k}{\alpha^2} \right)$$

- [1] B. Cai, C. Daskalakis, and G. Kamath, "Privit: Private and sample efficient identity testing," in *ICML*, 2017.
- [2] M. Aliakbarpour, I. Diakonikolas, and R. Rubinfeld, "Differentially private identity and closeness testing of discrete distributions," arXiv preprint arXiv:1707.05497, 2017.
- [3] O. Goldreich, "The uniform distribution is complete with respect to testing" identity to a fixed distribution.," in *Electronic Colloquium on Computational Complexity (ECCC)*, vol. 23, p. 1, 2016.
- [4] I. Diakonikolas, D. M. Kane, and V. Nikishkin, "Testing identity of structured distributions," in SODA, pp. 1841–1854, 2015.

Then any ε -DP hypothesis testing algorithm \mathcal{A} on p and q

• Design the following hypothesis testing problem,

 Q_2 : mixture of $2^{k/2}$ distributions (Paninski construction). • Bound the coupling distance from uniform to mixture,

$$,Y_1^n)] \leq C \cdot lpha^2 \min\left\{\!rac{n^2}{k},rac{n^{3/2}}{k^{1/2}}\!
ight\}.$$

• Prove a lower bound by our coupling theorem.